VI Semester B.Sc. Examination, May 2016 (OS) (Prior to 2013-14) PHYSICS – VII | | PHYSICS - VII | | |---|---|----------------| | Statistical and Solid State Physics Max. Marks | | ks : 60 | | Jin | me : 3 Hours Instruction : Answer any five questions from Part A , four problems from Part C . Part B and five questions from Part C . | | | 1 | PART – A Answer any five of the following. Each question carries six marks. Obtain an expression for Bose-Einstein distribution function. Obtain an expression for the electrical conductivity of metals based on free electron theory. | 6
6
6 | | 6.
7. | a) any three applications of nanotechnology and b) any three properties of smart materials. Explain with theory the powder method of X-ray diffraction. What are liquid crystals? Explain with diagram the different lyotropic liquid cryphases. a) State Bloch theorem. b) Distinguish between conductors, insulators and semiconductors on the boof band theory of solids. | pasis
(2+4) | | A 9. | Answer any four of the following. Each problem carries five marks. $h = 6.63 \times 10^{-34} \text{ Js}$ $e = 1.6 \times 10^{-19} \text{ C}$ $m_e = 9.1 \times 10^{-31} \text{ kg}$ $C = 3 \times 10^8 \text{ ms}^{-1}$ $K = 1.38 \times 10^{-23} \text{ JK}^{-1}$ 3. Consider a two particle system each of which exist in three quantum so what are the possible states if the particles are | (4×5=20) | | | 2) Fermions | | - The fermi energy for silver is 5.5 eV. Calculate the fermi temperature and fermi velocity. - 11. An X-ray photon of wavelength 0.1 Å is reflected at angle of 90° with its original direction after collision with an electron at rest. Find the energy it losses on collision. - Calculate the glancing angle on the plane (110) of a cube rock salt (a = 0.281 nm) corresponding to second order diffraction maximum for the X-rays of wavelength 0.071 nm. - Find the mobility of electrons in copper assuming that each atom contribute one free electron for conduction. Given : Resistivity of copper = 1.7×10^{-8} ohm—m Atomic weight of copper = 63.54 Density of copper = $8.96 \times 10^3 \, \text{kg m}^{-3}$ and Avogadro's number = 6.025×10^{26} kg-mole. Calculate the Hall coefficient of sodium as a free electron model given that sodium has a (bcc) structure of cell side 4.28 Å. ## PART-C Answer any five of the following. Each question carries two marks. (5×2=10) - 15. a) Can Fermi-Dirac statistics be applied to heavily doped semiconductors ? Explain. - b) Does the Fermi energy depend on the density of electron gas ? Explain. - c) When the potential difference between the electrode of an X-ray tube is increased what happens to its short wavelength. Give the relation. - d) Does Compton shift depend on the nature of the scattering material? Explain. - e) Do Miller indices represent a set of parallel planes ? Explain. - f) With increasing energy what happens the bands in Kronig-Penny Model? Explain. - g) Is solar cell a photovoltaic device ? Explain. - h) Does a paramagnetic substance have a net magnetization in the absence of external field? Explain.